Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Brain Behav Immun ; 109: 251-268, 2023 03.
Article in English | MEDLINE | ID: covidwho-2258334

ABSTRACT

COVID-19 and especially Long COVID are associated with severe CNS symptoms and may place persons at risk to develop long-term cognitive impairments. Here, we show that two non-infective models of SARS-CoV-2 can cross the blood-brain barrier (BBB) and induce neuroinflammation, a major mechanism underpinning CNS and cognitive impairments, even in the absence of productive infection. The viral models cross the BBB by the mechanism of adsorptive transcytosis with the sugar N-acetylglucosamine being key. The delta and omicron variants cross the BB B faster than the other variants of concern, with peripheral tissue uptake rates also differing for the variants. Neuroinflammation induced by icv injection of S1 protein was greatly enhanced in young and especially in aged SAMP8 mice, a model of Alzheimer's disease, whereas sex and obesity had little effect.


Subject(s)
Alzheimer Disease , COVID-19 , Humans , Mice , Animals , Blood-Brain Barrier/metabolism , Alzheimer Disease/metabolism , SARS-CoV-2 , COVID-19/complications , Neuroinflammatory Diseases , Post-Acute COVID-19 Syndrome
2.
Nat Neurosci ; 24(3): 368-378, 2021 03.
Article in English | MEDLINE | ID: covidwho-983666

ABSTRACT

It is unclear whether severe acute respiratory syndrome coronavirus 2, which causes coronavirus disease 2019, can enter the brain. Severe acute respiratory syndrome coronavirus 2 binds to cells via the S1 subunit of its spike protein. We show that intravenously injected radioiodinated S1 (I-S1) readily crossed the blood-brain barrier in male mice, was taken up by brain regions and entered the parenchymal brain space. I-S1 was also taken up by the lung, spleen, kidney and liver. Intranasally administered I-S1 also entered the brain, although at levels roughly ten times lower than after intravenous administration. APOE genotype and sex did not affect whole-brain I-S1 uptake but had variable effects on uptake by the olfactory bulb, liver, spleen and kidney. I-S1 uptake in the hippocampus and olfactory bulb was reduced by lipopolysaccharide-induced inflammation. Mechanistic studies indicated that I-S1 crosses the blood-brain barrier by adsorptive transcytosis and that murine angiotensin-converting enzyme 2 is involved in brain and lung uptake, but not in kidney, liver or spleen uptake.


Subject(s)
Blood-Brain Barrier/metabolism , Spike Glycoprotein, Coronavirus/pharmacokinetics , Administration, Intranasal , Administration, Intravenous , Angiotensin-Converting Enzyme 2/metabolism , Animals , Apolipoproteins E/genetics , COVID-19 , Genotype , Hippocampus/metabolism , Humans , Inflammation/chemically induced , Inflammation/metabolism , Lipopolysaccharides/pharmacology , Male , Mice , Mice, Transgenic , Olfactory Bulb/metabolism , Sex Characteristics , Spike Glycoprotein, Coronavirus/administration & dosage , Tissue Distribution , Transcytosis
SELECTION OF CITATIONS
SEARCH DETAIL